Jagged 1 regulates the restriction of Sox2 expression in the developing chicken inner ear: a mechanism for sensory organ specification.
نویسندگان
چکیده
Hair cells of the inner ear sensory organs originate from progenitor cells located at specific domains of the otic vesicle: the prosensory patches. Notch signalling is necessary for sensory development and loss of function of the Notch ligand jagged 1 (Jag1, also known as serrate 1) results in impaired sensory organs. However, the underlying mechanism of Notch function is unknown. Our results show that in the chicken otic vesicle, the Sox2 expression domain initially contains the nascent patches of Jag1 expression but, later on, Sox2 is only maintained in the Jag1-positive domains. Ectopic human JAG1 (hJag1) is able to induce Sox2 expression and enlarged sensory organs. The competence to respond to hJag1, however, is confined to the regions that expressed Sox2 early in development, suggesting that hJag1 maintains Sox2 expression rather than inducing it de novo. The effect is non-cell-autonomous and requires Notch signalling. hJag1 activates Notch, induces Hes/Hey genes and endogenous Jag1 in a non-cell-autonomous manner, which is consistent with lateral induction. The effects of hJag1 are mimicked by Jag2 but not by Dl1. Sox2 is sufficient to activate the Atoh1 enhancer and to ectopically induce sensory cell fate outside neurosensory-competent domains. We suggest that the prosensory function of Jag1 resides in its ability to generate discrete domains of Notch activity that maintain Sox2 expression within restricted areas of an extended neurosensory-competent domain. This provides a mechanism to couple patterning and cell fate specification during the development of sensory organs.
منابع مشابه
The Role of Sox 2 in Inner Ear Development
Title of Document: THE ROLE OF SOX2 IN INNER EAR DEVELOPMENT Lâle Evsen, Ph.D., 2012 Directed By: Professor Arthur N. Popper, Department of Biology The vertebrate inner ear is a structurally complex sensory organ responsible for detecting sound and maintaining balance. These functions are mediated by specialized sensory epithelia comprised of a mosaic of mechano-transducing hair cells and suppo...
متن کاملArtificial Induction of Sox21 Regulates Sensory Cell Formation in the Embryonic Chicken Inner Ear
During embryonic development, hair cells and support cells in the sensory epithelia of the inner ear derive from progenitors that express Sox2, a member of the SoxB1 family of transcription factors. Sox2 is essential for sensory specification, but high levels of Sox2 expression appear to inhibit hair cell differentiation, suggesting that factors regulating Sox2 activity could be critical for bo...
متن کاملThe Notch Ligand JAG1 Is Required for Sensory Progenitor Development in the Mammalian Inner Ear
In mammals, six separate sensory regions in the inner ear are essential for hearing and balance function. Each sensory region is made up of hair cells, which are the sensory cells, and their associated supporting cells, both arising from a common progenitor. Little is known about the molecular mechanisms that govern the development of these sensory organs. Notch signaling plays a pivotal role i...
متن کاملThe Prosensory Function of Sox2 in the Chicken Inner Ear Relies on the Direct Regulation of Atoh1
The proneural gene Atoh1 is crucial for the development of inner ear hair cells and it requires the function of the transcription factor Sox2 through yet unknown mechanisms. In the present work, we used the chicken embryo and HEK293T cells to explore the regulation of Atoh1 by Sox2. The results show that hair cells derive from Sox2-positive otic progenitors and that Sox2 directly activates Atoh...
متن کاملDifferential expression of Sox2 and Sox3 in neuronal and sensory progenitors of the developing inner ear of the chick.
The generation of the mechanosensory elements of the inner ear during development proceeds in a precise temporal and spatial pattern. First, neurosensory precursors form sensory neurons. Then, prosensory patches emerge and give rise to hair and supporting cells. Hair cells are innervated by cochleovestibular neurons that convey sound and balance information to the brain. SOX2 is an HMG transcri...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Development
دوره 138 4 شماره
صفحات -
تاریخ انتشار 2011